LLM Articles - Enterprise Knowledge https://enterprise-knowledge.com/tag/llm/ Mon, 17 Nov 2025 22:21:05 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.2 https://enterprise-knowledge.com/wp-content/uploads/2022/04/EK_Icon_512x512.svg LLM Articles - Enterprise Knowledge https://enterprise-knowledge.com/tag/llm/ 32 32 How to Leverage LLMs for Auto-tagging & Content Enrichment https://enterprise-knowledge.com/how-to-leverage-llms-for-auto-tagging-content-enrichment/ Wed, 29 Oct 2025 14:57:56 +0000 https://enterprise-knowledge.com/?p=25940 When working with organizations on key data and knowledge management initiatives, we’ve often noticed that a roadblock is the lack of quality (relevant, meaningful, or up-to-date) existing content an organization has. Stakeholders may be excited to get started with advanced … Continue reading

The post How to Leverage LLMs for Auto-tagging & Content Enrichment appeared first on Enterprise Knowledge.

]]>
When working with organizations on key data and knowledge management initiatives, we’ve often noticed that a roadblock is the lack of quality (relevant, meaningful, or up-to-date) existing content an organization has. Stakeholders may be excited to get started with advanced tools as part of their initiatives, like graph solutions, personalized search solutions, or advanced AI solutions; however, without a strong backbone of semantic models and context-rich content, these solutions are significantly less effective. For example, without proper tags and content types, a knowledge portal development effort  can’t fully demonstrate the value of faceting and aggregating pieces of content and data together in ‘knowledge panes’. With a more semantically rich set of content to work with, the portal can begin showing value through search, filtering, and aggregation, leading to further organizational and leadership buy-in.

One key step in preparing content is the application of metadata and organizational context to pieces of content through tagging. There are several tagging approaches an organization can take to enrich pre-existing content with metadata and organizational context, including manual tagging, automated tagging capabilities from a taxonomy and ontology management system (TOMS), using apps and features directly from a content management solution, and various hybrid approaches. While many of these approaches, in particular acquiring a TOMS, are recommended as a long-term auto-tagging solution, EK has recommended and implemented Large Language Model (LLM)-based auto-tagging capabilities across several recent engagements. Due to LLM-based tagging’s lower initial investment compared to a TOMS and its greater efficiency than manual tagging, these auto-tagging solutions have been able to provide immediate value and jumpstart the process of re-tagging existing content. This blog will dive deeper into how LLM tagging works, the value of semantics, technical considerations, and next steps for implementing an LLM-based tagging solution.

Overview of LLM-Based Auto-Tagging Process

Similar to existing auto-tagging approaches, the LLM suggests a tag by parsing through a piece of content, processing and identifying key phrases, terms, or structure that gives the document context. Through prompt engineering, the LLM is then asked to compare the similarity of key semantic components (e.g., named entities, key phrases) with various term lists, returning a set of terms that could be used to categorize the piece of content. These responses can be adjusted in the tagging workflow to only return terms meeting a specific similarity score. These tagging results are then exported to a data store and applied to the content source. Many factors, including the particular LLM used, the knowledge an LLM is working with, and the source location of content, can greatly impact the tagging effectiveness and accuracy. In addition, adjusting parameters, taxonomies/term lists, and/or prompts to improve precision and recall can ensure tagging results align with an organization’s needs. The final step is the auto-tagging itself and the application of the tags in the source system. This could look like a script or workflow that applies the stored tags to pieces of content.

Figure 1: High-level steps for LLM content enrichment

EK has put these steps into practice, for example, when engaging with a trade association on a content modernization project to migrate and auto-tag content into a new content management system (CMS). The organization had been struggling with content findability, standardization, and governance, in particular, the language used to describe the diverse areas of work the trade association covers. As part of this engagement, EK first worked with the organization’s subject matter experts (SMEs) to develop new enterprise-wide taxonomies and controlled vocabularies integrated across multiple platforms to be utilized by both external and internal end-users. To operationalize and apply these common vocabularies, EK developed an LLM-based auto-tagging workflow utilizing the four high-level steps above to auto-tag metadata fields and identify content types. This content modernization effort set up the organization for document workflows, search solutions, and generative AI projects, all of which are able to leverage the added metadata on documents. 

Value of Semantics with LLM-Based Auto-Tagging

Semantic models such as taxonomies, metadata models, ontologies, and content types can all be valuable inputs to guide an LLM on how to effectively categorize a piece of content. When considering how an LLM is trained for auto-tagging content, a greater emphasis needs to be put on organization-specific context. If using a taxonomy as a training input, organizational context can be added through weighting specific terms, increasing the number of synonyms/alternative labels, and providing organization-specific definitions. For example, by providing organizational context through a taxonomy or business glossary that the term “Green Account” refers to accounts that have met a specific environmental standard, the LLM would not accidentally tag content related to the color green or an account that is financially successful.

Another benefit of an LLM-based approach is the ability to evolve both the semantic model and LLM as tagging results are received. As sets of tags are generated for an initial set of content, the taxonomies and content models being used to train the LLM can be refined to better fit the specific organizational context. This could look like adding additional alternative labels, adjusting the definition of terms, or adjusting the taxonomy hierarchy. Similarly, additional tools and techniques, such as weighting and prompt engineering, can tune the results provided by the LLM and evolve the results generated to achieve a higher recall (rate the LLM is including the correct term) and precision (rate the LLM is selecting only the correct term) when recommending terms. One example of this is  adding weighting from 0 to 10 for all taxonomy terms and assigning a higher score for terms the organization prefers to use. The workflow developed alongside the LLM can use this context to include or exclude a particular term.

Implementation Considerations for LLM-Based Auto-Tagging 

Several factors, such as the timeframe, volume of information, necessary accuracy, types of content management systems, and desired capabilities, inform the complexity and resources needed for LLM-based content enrichment. The following considerations expand upon the factors an organization must consider for effective LLM content enrichment. 

Tagging Accuracy

The accuracy of tags from an LLM directly impacts end-users and systems (e.g., search instances or dashboards) that are utilizing the tags. Safeguards need to be implemented to ensure end-users can trust the accuracy of the tagged content they are using. These help ensure that a user is not mistakenly accessing or using a particular document, or that they are frustrated by the results they get. To mitigate both of these concerns, a high recall and precision score with the LLM tagging improves the overall accuracy and lowers the chance for miscategorization. This can be done by investing further into human test-tagging and input from SMEs to create a gold-standard set of tagged content as training data for the LLM. The gold-standard set can then be used to adjust how the LLM weights or prioritizes terms, based on the organizational context in the gold-standard set. These practices will help to avoid hallucinations (factually incorrect or misleading content) that could appear in applications utilizing the auto-tagged set of content.

Content Repositories

One factor that greatly adds technical complexity is accessing the various types of content repositories that an LLM solution, or any auto-tagging solution, needs to read from. The best content management practice for auto-tagging is to read content in its source location, limiting the risk of duplication and the effort needed to download and then read content. When developing a custom solution, each content repository often needs a distinctive approach to read and apply tags. A content or document repository like SharePoint, for example, has a robust API for reading content and seamlessly applying tags, while a less widely adopted platform may not have the same level of support. It is important to account for the unique needs of each system in order to limit the disruption end-users may experience when embarking on a tagging effort.

Knowledge Assets

When considering the scalability of the auto-tagging effort, it is also important to evaluate the breadth of knowledge asset types being analyzed. While the ability of LLMs to process several types of knowledge assets has been growing, each step of additional complexity, particularly evaluating multiple types, can result in additional resources and time needed to read and tag documents. A PDF document with 2-3 pages of content will take far fewer tokens and resources for an LLM to read its content than a long visual or audio asset. Going from a tagging workflow of structured knowledge assets to tagging unstructured content will increase the overall time, resources, and custom development needed to run a tagging workflow. 

Data Security & Entitlements

When utilizing an LLM, it is recommended that an organization invest in a private or an in-house LLM to complete analysis, rather than leveraging a publicly available model. In particular, an LLM does not need to be ‘on-premises’, as several providers have options for LLMs in your company’s own environment. This ensures a higher level of document security and additional features for customization. Particularly when tackling use cases with higher levels of personal information and access controls, a robust mapping of content and an understanding of what needs to be tagged is imperative. As an example, if a publicly facing LLM was reading confidential documents on how to develop a company-specific product, this information could then be leveraged in other public queries and has a higher likelihood of being accessed outside of the organization. In an enterprise data ecosystem, running an LLM-based auto-tagging solution can raise red flags around data access, controls, and compliance. These challenges can be addressed through a Unified Entitlements System (UES) that creates a centralized policy management system for both end users and LLM solutions being deployed.

Next Steps:

One major consideration with an LLM tagging solution is maintenance and governance over time. For some organizations, after completing an initial enrichment of content by the LLM, a combination of manual tagging and forms within each CMS helps them maintain tagging standards over time. However, a more mature organization that is dealing with several content repositories and systems may want to either operationalize the content enrichment solution for continued use or invest in a TOMS. With either approach, completing an initial LLM enrichment of content is a key method to prove the value of semantics and metadata to decision-makers in an organization. 
Many technical solutions and initiatives that excite both technical and business stakeholders can be actualized by an LLM content enrichment effort. By having content that is tagged and adhering to semantic standards, solutions like knowledge graphs, knowledge portals, and semantic search engines, or even an enterprise-wide LLM Solution, are upgraded even further to show organizational value.

If your organization is interested in upgrading your content and developing new KM solutions, contact us!

The post How to Leverage LLMs for Auto-tagging & Content Enrichment appeared first on Enterprise Knowledge.

]]>
How to Fill Your Knowledge Gaps to Ensure You’re AI-Ready https://enterprise-knowledge.com/how-to-fill-your-knowledge-gaps-to-ensure-youre-ai-ready/ Mon, 29 Sep 2025 19:14:44 +0000 https://enterprise-knowledge.com/?p=25629 “If only our company knew what our company knows” has been a longstanding lament for leaders: organizations are prevented from mobilizing their knowledge and capabilities towards their strategic priorities. Similarly, being able to locate knowledge gaps in the organization, whether … Continue reading

The post How to Fill Your Knowledge Gaps to Ensure You’re AI-Ready appeared first on Enterprise Knowledge.

]]>
“If only our company knew what our company knows” has been a longstanding lament for leaders: organizations are prevented from mobilizing their knowledge and capabilities towards their strategic priorities. Similarly, being able to locate knowledge gaps in the organization, whether we were initially aware of them (known unknowns), or initially unaware of them (unknown unknowns), represents opportunities to gain new capabilities, mitigate risks, and navigate the ever-accelerating business landscape more nimbly.  

AI implementations are already showing signs of knowledge gaps: hallucinations, wrong answers, incomplete answers, and even “unanswerable” questions. There are multiple causes for AI hallucinations, but an important one is not having the right knowledge to answer a question in the first place. While LLMs may have been trained on massive amounts of data, it doesn’t mean that they know your business, your people, or your customers. This is a common problem when organizations make the leap from how they experience “Public AI” tools like ChatGPT, Gemini, or Copilot, to attempting their own organization’s AI solutions. LLMs and agentic solutions need knowledge—your organization’s unique knowledgeto produce results that are unique to your and your customers’ needs, and help employees navigate and solve challenges they encounter in their day-to-day work. 

In a recent article, EK outlined key strategies for preparing content and data for AI. This blog post builds on that foundation by providing a step-by-step process for identifying and closing knowledge gaps, ensuring a more robust AI implementation.

 

The Importance of Bridging Knowledge Gaps for AI Readiness

EK lays out a six-step path to getting your content, data, and other knowledge assets AI-ready, yielding assets that are correct, complete, consistent, contextual, and compliant. The diagram below provides an overview of these six steps:

The six steps to AI readiness. Step one: Define Knowledge Assets. Step two: Conduct cleanup. Step three: Fill Knowledge Gaps (We are here). Step four: Enrich with context. Step five: Add structure. Step six: Protect the knowledge assets.

Identifying and filling knowledge gaps, the third step of EK’s path towards AI readiness, is crucial in ensuring that AI solutions have optimized inputs. 

Prior to filling gaps, an organization will have defined its critical knowledge assets and conducted a content cleanup. A content cleanup not only ensures the correctness and reliability of the knowledge assets, but also reveals the specific topics, concepts, or capabilities that the organization cannot currently supply to AI solutions as inputs.

This scenario presupposes that the organization has a clear idea of the AI use cases and purposes for its knowledge assets. Given the organization knows the questions AI needs to answer, an assessment to identify the location and state of knowledge assets can be targeted based on the inputs required. This assessment would be followed by efforts to collect the identified knowledge and optimize it for AI solutions. 

A second, more complicated, scenario arises when an organization hasn’t formulated a prioritized list of questions for AI to answer. The previously described approach, relying on drawing up a traditional knowledge inventory will face setbacks because it may prove difficult to scale, and won’t always uncover the insights we need for AI readiness. Knowledge inventories may help us understand our known unknowns, but they will not be helpful in revealing our unknown unknowns

 

Identifying the Gap

How can we identify something that is missing? At this juncture, organizations will need to leverage analytics, introduce semantics, and if AI is already deployed in the organization, then use it as a resource as well. There are different techniques to identify these gaps, depending on whether your organization has already deployed an AI solution or is ramping up for one. Available options include:

Before and After AI Deployment

Leveraging Analytics from Existing Systems

Monitoring and assessing different tools’ analytics is an established practice to understand user behavior. In this instance, EK applies these same methods to understand critical questions about the availability of knowledge assets. We are particularly interested in analytics that reveal answers to the following questions:

  • When are our people giving up when navigating different sections of a tool or portal? 
  • What sort of queries return no results?
  • What queries are more likely to get abandoned? 
  • What sort of content gets poor reviews, and by whom?
  • What sort of material gets no engagement? What did the user do or search for before getting to it? 

These questions aim to identify instances of users trying, and failing, to get knowledge they need to do their work. Where appropriate, these questions can also be posed directly to users via surveys or focus groups to get a more rounded perspective. 

Semantics

Semantics involve modeling an organization’s knowledge landscape with taxonomies and ontologies. When taxonomies and ontologies have been properly designed, updated, and consistently applied to knowledge, they are invaluable as part of wider knowledge mapping efforts. In particular, semantic models can be used as an exemplar of what should be there, and can then be compared with what is actually present, thus revealing what is missing.

We recently worked with a professional association within the medical field, helping them define a semantic model for their expansive amount of content, and then defining an automated approach to tagging these knowledge assets. As part of the design process, EK taxonomists interviewed experts across all of the association’s organizational functional teams to define the terms that should be present in the organization’s knowledge assets. After the first few rounds of auto-tagging, we examined the taxonomy’s coverage, and found that a significant fraction of the terms in the taxonomy went unused. We validated our findings with our clients’ experts, and, to their surprise, our engagement revealed an imbalance of knowledge asset production: while some topics were covered by their content, others were entirely lacking. 

Valid taxonomy terms or ontology concepts for which few to no knowledge assets exist reveal a knowledge gap where AI is likely to struggle.

After AI Deployment

User Engagement & Feedback

To ensure a solution can scale, evolve, and remain effective over time, it is important to establish formal feedback mechanisms for users to engage with system owners and governance bodies on an ongoing basis. Ideally, users should have a frictionless way to report an unsatisfactory answer immediately after they receive it, whether it is because the answer is incomplete or just plain wrong. A thumbs-up or thumbs-down icon has traditionally been used to solicit this kind of feedback, but organizations should also consider dedicated chat channels, conversations within forums, or other approaches for communicating feedback to which their users are accustomed.

AI Design and Governance 

Out-of-the-box, pre-trained language models are designed to prioritize providing a fluid response, often leading them to confidently generate answers even when their underlying knowledge is uncertain or incomplete. This core behavior increases the risk of delivering wrong information to users. However, this flaw can be preempted by thoughtful design in enterprise AI solutions: the key is to transform them from a simple answer generator into a sophisticated instrument that can also detect knowledge gaps. Enterprise AI solutions can be engineered to proactively identify questions which they do not have adequate information to answer and immediately flag these requests. This approach effectively creates a mandate for AI governance bodies to capture the needed knowledge. 

AI can move beyond just alerting the relevant teams about missing knowledge. As we will soon discuss, AI holds additional capabilities to close knowledge gaps by inferring new insights from disparate, already-known information, and connecting users directly with relevant human experts. This allows enterprise AI to not only identify knowledge voids, but also begin the process of bridging them.

 

Closing the Gap

It is important, at this point, to make the distinction between knowledge that is truly missing from the organization and knowledge that is simply unavailable to the organization’s AI solution. The approach to close the knowledge gap will hinge on this key distinction. 

 

If the ‘missing’ knowledge is documented or recorded somewhere… but the knowledge is not in a format that AI can use it, then:

Transform and migrate the present knowledge asset into a format that AI can more readily ingest. 

How this looks in practice:

A professional services firm had a database of meeting recordings meant for knowledge-sharing and disseminating lessons learned. The firm determined that there is a lot of knowledge “in the rough” that AI could incorporate into existing policies and procedures, but this was impossible to do by ingesting content in video format. EK engineers programmatically transcribed the videos, and then transformed the text into a machine-readable format. To make it truly AI-ready, we leveraged Natural Language Processing (NLP) and Named Entity Recognition (NER) techniques to contextualize the new knowledge assets by associating them with other concepts across the organization.

If the ‘missing’ knowledge is documented or recorded somewhere… but the knowledge exists in private spaces like email or closed forums, then:

Establish workflows and guidelines to promote, elevate, and institutionalize knowledge that had been previously informal.

How this looks in practice:

A government agency established online Communities of Practice (CoPs) to transfer and disseminate critical knowledge on key subject areas. Community members shared emerging practices and jointly solved problems. Community managers were able to ‘graduate’ informal conversations and documents into formal agency resources that lived within a designated repository, fully tagged, and actively managed. These validated and enhanced knowledge assets became more valuable and reliable for AI solutions to ingest.

If the ‘missing’ knowledge is documented or recorded somewhere… but the knowledge exists in different fragments across disjointed repositories, then: 

Unify the disparate fragments of knowledge by designing and applying a semantic model to associate and contextualize them. 

How this looks in practice:

A Sovereign Wealth Fund (SWF) collected a significant amount of knowledge about its investments, business partners, markets, and people, but kept this information fragmented and scattered across multiple repositories and databases. EK designed a semantic layer (composed of a taxonomy, ontology, and a knowledge graph) to act as a ‘single view of truth’. EK helped the organization define its key knowledge assets, like investments, relationships, and people, and weaved together data points, documents, and other digital resources to provide a 360-degree view of each of them. We furthermore established an entitlements framework to ensure that every attribute of every entity could be adequately protected and surfaced only to the right end-user. This single view of truth became a foundational element in the organization’s path to AI deployment—it now has complete, trusted, and protected data that can be retrieved, processed, and surfaced to the user as part of solution responses. 

If the ‘missing’ knowledge is not recorded anywhere… but the company’s experts hold this knowledge with them, then: 

Choose the appropriate techniques to elicit knowledge from experts during high-value moments of knowledge capture. It is important to note that we can begin incorporating agentic solutions to help the organization capture institutional knowledge, especially when agents can know or infer expertise held by the organization’s people. 

How this looks in practice:

Following a critical system failure, a large financial institution recognized an urgent need to capture the institutional knowledge held by its retiring senior experts. To address this challenge, they partnered with EK, who developed an AI-powered agent to conduct asynchronous interviews. This agent was designed to collect and synthesize knowledge from departing experts and managers by opening a chat with each individual and asking questions until the defined success criteria were met. This method allowed interviewees to contribute their knowledge at their convenience, ensuring a repeatable and efficient process for capturing critical information before the experts left the organization.

If the ‘missing’ knowledge is not recorded anywhere… and the knowledge cannot be found, then:

Make sure to clearly define the knowledge gap and its impact on the AI solution as it supports the business. When it has substantial effects on the solution’s ability to provide critical responses, then it will be up to subject matter experts within the organization to devise a strategy to create, acquire, and institutionalize the missing knowledge. 

How this looks in practice:

A leading construction firm needed to develop its knowledge and practices to be able to keep up with contracts won for a new type of project. Its inability to quickly scale institutional knowledge jeopardized its capacity to deliver, putting a significant amount of revenue at risk. EK guided the organization in establishing CoPs to encourage the development of repeatable processes, new guidance, and reusable artifacts. In subsequent steps, the firm could extract knowledge from conversations happening within the community and ingest them into AI solutions, along with novel knowledge assets the community developed. 

 

Conclusion

Identifying and closing knowledge gaps is no small feat, and predicting knowledge needs was nearly impossible before the advent of AI. Now, AI acts as both a driver and a solution, helping modern enterprises maintain their competitive edge.

Whether your critical knowledge is in people’s heads or buried in documents, Enterprise Knowledge can help. We’ll show you how to capture, connect, and leverage your company’s knowledge assets to their full potential to solve complex problems and obtain the results you expect out of your AI investments. Contact us today to learn how to bridge your knowledge gaps with AI.

The post How to Fill Your Knowledge Gaps to Ensure You’re AI-Ready appeared first on Enterprise Knowledge.

]]>
LLM Solutions PoC to Production: From RAGs to Riches (Part 1) https://enterprise-knowledge.com/llm-solutions-poc-to-production-from-rags-to-riches-part-1/ Wed, 30 Jul 2025 19:14:23 +0000 https://enterprise-knowledge.com/?p=25063 In the past year, many of the organizations EK has partnered with have been developing Large Language Model (LLM) based Proof-of-Concepts (PoCs). These projects are often pushed for by an enthusiastic IT Team, or internal initiative – with the low … Continue reading

The post LLM Solutions PoC to Production: From RAGs to Riches (Part 1) appeared first on Enterprise Knowledge.

]]>
In the past year, many of the organizations EK has partnered with have been developing Large Language Model (LLM) based Proof-of-Concepts (PoCs). These projects are often pushed for by an enthusiastic IT Team, or internal initiative – with the low barrier to entry and cost in LLM development making it an easy project for executives to greenlight. Despite initial optimism, these LLM PoCs rarely reach the enterprise-grade implementations promised due to factors such as organizational buy-in, technical complexity, security concerns, misalignment on content readiness for AI solutions, and a lack of investment in key infrastructure. For example, Gartner has predicted that 30% of GenerativeAI projects will be abandoned after PoC by the end of 2025. This blog provides an overview of EK’s approach to evaluating and roadmapping an LLM solution from PoC to production, and highlights several dimensions important to successfully scaling an LLM-based enterprise solution.

 

Organizational Implementation Considerations:

Before starting on the technical journey from “RAGs to Riches”, there are several considerations for an organization before, during, and after creating a production solution. By taking into account each of these considerations, a production LLM solution has a much higher chance of success.

Before: Aligning Business Outcomes

Prior to building out a production LLM solution, a team will have developed a PoC LLM solution that is able to answer a limited set of use cases. Before the start of production development, it is imperative that business outcomes and the priorities of key stakeholders are aligned with project goals. This often looks like mapping business outcomes – such as enhanced customer interactions, operational efficiency, or reduced compliance risk to quantifiable outcomes such as shorter response times and findability of information. It is important to ensure these business goals translate from development to production and adoption by customers. Besides meeting technical functionality, setting up clear customer and organizational goals will help to ensure the production LLM solution continues to have organizational support throughout its entire lifecycle.

During: Training Talent and Proving Solutions

Building out a production LLM solution will require a team with specialized skills in natural language processing (NLP), prompt engineering, semantic integration, and embedding strategies. In addition, EK recommends investing resources into content strategists and SMEs who understand the state of their organization’s data and/or content. These roles in particular are critical to help prepare content for AI solutions, ensuring the LLM solution has comprehensive and semantically meaningful content. Organizations that EK has worked with have successfully launched and maintained production LLM solutions by proactively investing in these skills for organizational staff. This helps organizations build resilience in the overall solution, driving success in LLM solution development.

After: Infrastructure Planning and Roadmapping

To maintain a production LLM solution after it has been deployed to end-users, organizations must account for the infrastructure investments and operational costs needed, as well as necessary content and data maintenance. Some of these resources might include enterprise licensing, additional software infrastructure, and ongoing support costs. While many of these additional costs can be mitigated by effectively aligning business outcomes and training organizational talent, there still needs to be a roadmap and investment into the future infrastructure (both systematically and content-wise) of the LLM production solution.

 

Technical Criteria for Evaluating LLM PoCs:

In parallel with the organizational implementation considerations, and from EK’s depth of experience in developing LLM MVPs, designing enterprise AI architecture, and implementing more advanced LLM solutions such as Semantic RAG, EK has developed 7 key dimensions that can be used to evaluate the effectiveness of an LLM PoC:

Figure 1: Dimensions for Evaluating an LLM Solution

1. Depth of Interaction: refers to how deeply and dynamically users can engage with the LLM solution. At a lower level, interaction might simply involve asking questions and receiving direct answers, while at the highest level, intelligent agents act on behalf of the user autonomously to leverage multiple tools and execute tasks.

2. Freshness of Information: describes how frequently the content and data behind the semantic search solution are updated and how quickly users receive these updates. While lower freshness implies data updated infrequently, at higher freshness levels, data is updated frequently or even continuously which helps to ensure users are always interacting with the most current, accurate, and updated information available.

3. Level of Explanation: refers to how transparently the LLM solution communicates the rationale behind its responses. At a lower level of explanation, users simply are receiving answers without clear reasoning. In contrast, a high level of explanation would include evidence, citations, audit trails, and a clear path on how information was retrieved. 

4. Personalization, Access & Entitlements Requirements: describes how specifically content and data are tailored and made accessible based on user identity, roles, behavior, or needs. At lower levels, content is available to all users without personalization or adaptations. At higher levels, content personalization is integrated with user profiles, entitlements, and explicit access controls, ensuring users only see highly relevant, permissioned content. 

5. Accuracy of Information: refers to how reliably and correctly the LLM solution can answer user queries. At lower levels, users receive reasonable answers that may have minor ambiguities or occasional inaccuracies. At the highest accuracy level, each response is traced back to original source materials and are cross-validated with authoritative sources. 

6. Enterprise Agentic Support: describes how the LLM solution interacts with the broader enterprise AI ecosystem, and coordinates with other AI agents. At the lowest level, the solution acts independently without any coordination with external AI agents. At the highest level, the solution seamlessly integrates as a consumer and provider within an ecosystem of other intelligent agents.

7. Enterprise Embedding Strategy: refers to how the LLM solution converts information into vector representations (embeddings) to support retrieval. At a lower level embeddings are simple vector representations with minimal or no structured metadata. At the highest levels, embeddings include robust metadata and are integrated with enterprise context through semantic interpretation and ontology-based linkages. 

For an organization, each of the technical criteria will be weighed differently based on the unique use cases and requirements of the LLM solution. For example, an organization that is working on a content generation use case could have a greater emphasis on Level of Explanation and Freshness of Information while an organization that is working on an information retrieval use case may care more about Personalization, Access, & Entitlements Requirements. This is an integral part of the evaluation process, with an organization coming to agreement on the level of proficiency needed within each factor. Leveraging this standard, EK has worked with organizations across various industries and diverse LLM use cases to optimize their solutions.

Additionally, EK recommends that an organization undergoing an LLM PoC evaluation also conduct an in-depth analysis of content relevant to their selected use case(s). This enables them to gain a more comprehensive understanding of its quality – including factors like completeness, relevancy, and currency – and can help unearth gaps in what the LLM may be able to answer. All of this informs the testing phase by guiding the creation of each test, as well as the expected outcomes, and can be generally categorized across three main areas of remediation:

  • Content Quality – The content regarding a certain topic doesn’t explicitly exist and is not standardized – this may necessitate creating dummy data to enable certain types of tests.
  • Content Structure – The way certain content is structured varies – we can likely posit that one particular structure will give more accurate results than another. This may necessitate creating headings to indicate clear hierarchy on pages, and templates to consistently structure content. 
  • Content Metadata – Contextual information that may be useful to users is missing from content. This may necessitate establishing a taxonomy to tag with a controlled vocabulary, or an ontology to establish relationships between concepts. 

 

Technical Evaluation of LLM PoCs In Practice:

Putting the organizational implementation and technical considerations into practice, EK recently completed an engagement with a leading semiconductor manufacturer, employing the standard process for evaluating their PoC LLM search solution. The organization had developed a PoC search solution that was being utilized for answering questions against a series of user-selected PDFs relating to the company’s technical onboarding documentation. EK worked with the organization  to align on key functional requirements via a capability assessment for a production LLM solution based on the 7 dimensions EK has identified. Additionally, EK completed a simultaneous analysis of in-scope content for the use case. The results of this content evaluation informed which content components should be prioritized and candidates for the testing plan.

After aligning on priority requirements, in this case, accuracy and freshness of information, EK developed and conducted a testing plan for parts of the PoC LLM. To operationalize the testing plan, EK created a four-phase RAG Evaluation & Optimization Workflow to turn the testing plan into actionable insights.This workflow helped produce a present-state snapshot of the LLM solution, a target-state benchmark, and a bridging roadmap that prioritizes retriever tuning, prompt adjustments, and content enrichment. Based on the workflow results, stakeholders at the organization were able to easily interpret how improved semantics, content quality, structure, and metadata would improve the results of their LLM search solution.

In the following blogs of the “RAGs to Riches” series, EK will be explaining the process for developing a capability assessment and testing plan for LLM based PoCs. These blogs will expand further on how each of the technical criteria can be measured as well as how to develop long-term strategy for production solutions.

 

Conclusion

Moving an LLM solution from proof-of-concept to enterprise production is no small feat. It requires careful attention to organizational alignment, strong business cases, technical planning, compliance readiness, content optimization, and a commitment to ongoing talent development. Addressing these dimensions systematically will ensure that your organization will be well positioned to turn AI innovation into a durable competitive advantage.

If you are interested in having EK evaluate your LLM-based solution, and help build out an enterprise-grade implementation contact us here

The post LLM Solutions PoC to Production: From RAGs to Riches (Part 1) appeared first on Enterprise Knowledge.

]]>
Semantic Search Advisory and Implementation for an Online Healthcare Information Provider https://enterprise-knowledge.com/semantic-search-advisory-and-implementation-for-an-online-healthcare-information-provider/ Tue, 22 Jul 2025 14:13:12 +0000 https://enterprise-knowledge.com/?p=24995 The medical field is an extremely complex space, with thousands of concepts that are referred to by vastly different terms. These terms can vary across regions, languages, areas of practice, and even from clinician to clinician. Additionally, patients often communicate ... Continue reading

The post Semantic Search Advisory and Implementation for an Online Healthcare Information Provider appeared first on Enterprise Knowledge.

]]>

The Challenge

The medical field is an extremely complex space, with thousands of concepts that are referred to by vastly different terms. These terms can vary across regions, languages, areas of practice, and even from clinician to clinician. Additionally, patients often communicate with clinicians using language that reflects their more elementary understanding of health. This complicates the experience for patients when trying to find resources relevant to certain topics such as medical conditions or treatments, whether through search, chatbots, recommendations, or other discovery methods. This can lead to confusion during stressful situations, such as when trying to find a topical specialist or treat an uncommon condition.

A major online healthcare information provider engaged with EK to improve both their consumer-facing and clinician-facing natural language search and discovery platforms in order to deliver faster and more relevant results and recommendations. Their consumer-facing web pages aimed to connect consumers with healthcare providers when searching for a condition, with consumers often using terms or phrases that may not be an exact match with medical terms. In contrast, the clinicians who purchased licenses to the provider’s content required a fast and accurate method of searching for content regarding various conditions. They work in time-sensitive settings where rapid access to relevant content could save a patient’s life, and often use synonymous acronyms or domain-specific jargon that complicates the search process. The client desired a solution which could disambiguate between concepts and match certain concepts to a list of potential conditions. EK was tasked to refine these search processes to provide both sets of end users with accurate content recommendations.

The Solution

Leveraging both industry and organizational taxonomies for clinical topics and conditions, EK architected a search solution that could take both the technical terms preferred by clinicians and the more conversational language used by consumers and match them to conditions and relevant medical information. 

To improve search while maintaining a user-friendly experience, EK worked to:

  1. Enhance keyword search through metadata enrichment;
  2. Enable natural language search using large language models (LLMs) and vector search techniques, and;
  3. Introduce advanced search features post-initial search, allowing users to refine results with various facets.

The core components of EK’s semantic search advisory and implementation included:

  1. Search Solution Vision: EK collaborated with client stakeholders to determine and implement business and technical requirements with associated search metrics. This would allow the client to effectively evaluate LLM-powered search performance and measure levels of improvement. This approach focused on making the experience faster for clinicians searching for information and for consumers seeking to connect with a doctor. This work supported the long-term goal of improving the overall experience for consumers using the search platform. The choice of LLM and associated embeddings played a key role: by selecting the right embeddings, EK could improve the association of search terms, enabling more accurate and efficient connections, which proved especially critical during crisis situations. 
  2. Future State Roadmap: As part of the strategy portion of this engagement, EK worked with the client to create a roadmap for deploying the knowledge panel to the consumer-facing website in production. This roadmap involved deploying and hosting the content recommender, further expanding the clinical taxonomy, adding additional filters to the knowledge panel (such as insurance networks and location data), and search features such as autocomplete and type-ahead search. Setting future goals after implementation, EK suggested the client use machine learning methods to classify consumer queries based on language and predict their intent, as well as establish a way to personalize the user experience based on collected behavioral data/characteristics.
  3. Keyword and Natural Language Search Enhancement: EK developed a gold standard template for client experts in the medical domain to provide the ideal expected search results for particular clinician queries. This gold standard served as the foundation for validating the accuracy of the search solution in pointing clinicians to the right topics. Additionally, EK used semantic clustering and synonym analysis in order to identify further search terms to add as synonyms into the client’s enterprise taxonomy. Enriching the taxonomy with more clinician-specific language used when searching for concepts with natural language improved the retrieval of more relevant search results.
  4. Semantic Search Architecture Design and LLM Integration: EK designed and implemented a semantic search architecture to support the solution’s search features, EK connecting the client’s existing taxonomy and ontology management system (TOMS), the client’s search engine, and a new LLM. Leveraging the taxonomy stored in the TOMS and using the LLM to match search terms and taxonomy concepts based on similarity enriched the accuracy and contextualization of search results. EK also wrote custom scripts to evaluate the LLM’s understanding of medical terminology and generate evaluation metrics, allowing for performance monitoring and continuous improvement to keep the client’s search solution at the forefront of LLM technology. Finally, EK created a bespoke, reusable benchmark for LLM scores, evaluating how well a certain model matched natural language queries to clinical search terms and allowing the client to select the highest-performing model for consumer use.
  5. Semantic Knowledge Panel: To demonstrate the value this technology would bring to consumers, EK developed a clickable, action-oriented knowledge panel that showcased the envisioned future-state experience. Designed to support consumer health journeys, the knowledge panel guides users through a seamless journey – from conversational search (e.g. “I think I broke my ankle”), to surfacing relevant contextual information (such as web content related to terms and definitions drawn from the taxonomy), to connecting users to recommended clinicians and their scheduling pages based on their ability to treat the condition being searched (e.g. An orthopedist for a broken ankle). EK’s prototype leveraged a taxonomy of tagged keywords and provider expertise, with a scoring algorithm that assessed how many, and how well, those tags matched the user’s query. This scoring informed a sorted display of provider results, enabling users to take direct action (e.g. scheduling an appointment with an orthopedist) without leaving the search experience.

The EK Difference

EK’s expertise in semantic layer, solution architecture, artificial intelligence, and enterprise search came together to deliver a bespoke and unified solution that returned more accurate, context-aware information for clinicians and consumers. By collaborating with key medical experts to enrich the client’s enterprise taxonomy, EK’s semantic experts were able to share unique insights and knowledge on LLMs, combined with their experience with applying taxonomy and semantic similarity in natural language search use cases, to place the client in the best position to enable accurate search. EK also was able to upskill the client’s technical team on semantic capabilities and the architecture of the knowledge panel through knowledge transfers and paired programming, so that they could continue to maintain and enhance the solution in the future.

Additionally, EK’s solution architects, possessing deep knowledge of enterprise search and artificial intelligence technologies, were uniquely positioned to provide recommendations on the most advantageous method to seamlessly integrate the client’s TOMS and existing search engine with an LLM specifically developed for information retrieval. While a standard-purpose LLM could perform these tasks to some extent, EK helped design a purpose-built semantic search solution leveraging a specialized LLM that better identified and disambiguated user terms and phrases. 

Finally, EK’s search experts were able to define and monitor key search metrics with the client’s team, enabling them to closely monitor improvement over time, identifying trends and suggesting improvements to match. These search improvements resulted in a solution the client could be confident in and trust to be accurate.

The Results

The delivery of a semantic search prototype with a clear path to a production, web-based solution resulted in the opportunity for greatly augmented search capabilities across the organization’s products. Overall, this solution allowed both healthcare patients and clinicians to find exactly what they are looking for using a wide variety of terms.

As a result of EK’s semantic search advisory and implementation efforts, the client was able to:

  1. Empower potential patients to use web-based semantic search platform to search for specialists who can treat their conditions quickly and easily find care; 
  2. Streamline the content delivery process in critical, time-sensitive situations such as emergency rooms by providing rapid and accurate content that highlights and elaborates on potential diagnoses and treatments to healthcare professionals; and
  3. Identify potential data and metadata gaps in the healthcare information database that the client relies on to populate its website and recommend content to users.

Looking to improve your organization’s search capabilities? Want to see how LLMs can power your semantic ecosystem? Learn more from our experience or contact us today.

Download Flyer

Ready to Get Started?

Get in Touch

The post Semantic Search Advisory and Implementation for an Online Healthcare Information Provider appeared first on Enterprise Knowledge.

]]>
David Hughes Speaking at Agentic AI Summit https://enterprise-knowledge.com/david-hughes-speaking-at-agentic-ai-summit/ Thu, 10 Jul 2025 15:53:50 +0000 https://enterprise-knowledge.com/?p=24868 David Hughes, Principal Data & AI Solution Architect at Enterprise Knowledge, will be conducting a virtual workshop titled “Agentic Workflows for Graph RAG: Evaluating & Benchmarking Results” at ODSC’s Agentic AI Summit on Wednesday, July 30th at 4:20pm EST. In … Continue reading

The post David Hughes Speaking at Agentic AI Summit appeared first on Enterprise Knowledge.

]]>
David Hughes, Principal Data & AI Solution Architect at Enterprise Knowledge, will be conducting a virtual workshop titled “Agentic Workflows for Graph RAG: Evaluating & Benchmarking Results” at ODSC’s Agentic AI Summit on Wednesday, July 30th at 4:20pm EST.

In this advanced session, David will focus on the unique challenges of evaluating agentic Graph RAG systems. Traditional LLM evaluation metrics fall short when measuring Graph RAG performance in production environments where agents make autonomous decisions based on retrieved knowledge, and unlike simple question-answering scenarios, agentic workflows require evaluation frameworks that measure not just accuracy, but decision quality, reasoning consistency, and operational reliability under real-world conditions.

By the end of this session, attendees will have the tools and methodologies to confidently deploy and maintain Graph RAG systems that their agents can rely on for critical decision-making.

For more information on the conference, check out the schedule here.

The post David Hughes Speaking at Agentic AI Summit appeared first on Enterprise Knowledge.

]]>
Optimizing Historical Knowledge Retrieval: Leveraging an LLM for Content Cleanup https://enterprise-knowledge.com/optimizing-historical-knowledge-retrieval-leveraging-an-llm-for-content-cleanup/ Wed, 02 Jul 2025 19:39:00 +0000 https://enterprise-knowledge.com/?p=24805 Enterprise Knowledge (EK) recently worked with a Federally Funded Research and Development Center (FFRDC) that was having difficulty retrieving relevant content in a large volume of archival scientific papers. Researchers were burdened with excessive search times and the potential for knowledge loss ... Continue reading

The post Optimizing Historical Knowledge Retrieval: Leveraging an LLM for Content Cleanup appeared first on Enterprise Knowledge.

]]>
 

The Challenge

Enterprise Knowledge (EK) recently worked with a Federally Funded Research and Development Center (FFRDC) that was having difficulty retrieving relevant content in a large volume of archival scientific papers. Researchers were burdened with excessive search times and the potential for knowledge loss when target documents could not be found at all. To learn more about the client’s use case and EK’s initial strategy, please see the first blog in the Optimizing Historical Knowledge Retrieval series: Standardizing Metadata for Enhanced Research Access.

To make these research papers more discoverable, part of EK’s solution was to add “about-ness” tags to the document metadata through a classification process. Many of the files in this document management system (DMS) were lower quality PDF scans of older documents, such as typewritten papers and pre-digital technical reports that often included handwritten annotations. To begin classifying the content, the team first needed to transform the scanned PDFs into machine-readable text. EK utilized an Optical Character Recognition (OCR) tool, which can “read” non-text file formats for recognizable language and convert it into digital text. When processing the archival documents, even the most advanced OCR tools still introduced a significant amount of noise in the extracted text. This frequently manifested as:

  • A table, figure, or handwriting in the document being read in as random symbols and white space.
  • Inserting random punctuation where a spot or pen mark may have been on the file, breaking up words and sentences.
  • Excessive or misplaced line breaks separating related content.
  • Other miscellaneous irregularities in the text that make the document less comprehensible.

The first round of text extraction using out-of-the-box OCR capabilities resulted in many of the above issues across the output text files. This starter batch of text extracts was sent to the classification model to be tagged. The results were assessed by examining the classifier’s evidence within the document for tagging (or failing to tag) a concept. Through this inspection, the team found that there was enough clutter or inconsistency within the text extracts that some irrelevant concepts were misapplied and other, applicable concepts were being missed entirely. It was clear from the negative impact on classification performance that document comprehension needed to be enhanced.

Auto-Classification
Auto-Classification (also referred to as auto-tagging) is an advanced process that automatically applies relevant terms or labels (tags) from a defined information model (such as a taxonomy) to your data. Read more about Enterprise Knowledge’s auto-tagging solutions here:

The Solution

To address this challenge, the team explored several potential solutions for cleaning up the text extracts. However, there was concern that direct text manipulation might lead to the loss of critical information if blanket applied to the entire corpus. Rather than modifying the raw text directly, the team decided to leverage a client-side Large Language Model (LLM) to generate additional text based on the extracts. The idea was that the LLM could potentially better interpret the noise from OCR processing as irrelevant and produce a refined summary of the text that could be used to improve classification.

The team tested various summarization strategies via careful prompt engineering to generate different kinds of summaries (such as abstractive vs. extractive) of varying lengths and levels of detail. The team performed a human-in-the-loop grading process to manually assess the effectiveness of these different approaches. To determine the prompt to be used in the application, graders evaluated the quality of summaries generated per trial prompt over a sample set of documents with particularly low-quality source PDFs. Evaluation metrics included the complexity of the prompt, summary generation time, human readability, errors, hallucinations, and of course – precision of  auto-classification results.

The EK Difference

Through this iterative process, the team determined that the most effective summaries for this use case were abstractive summaries (summaries that paraphrase content) of around four complete sentences in length. The selected prompt generated summaries with a sufficient level of detail (for both human readers and the classifier) while maintaining brevity. To improve classification, the LLM-generated summaries are meant to supplement the full text extract, not to replace it. The team incorporated the new summaries into the classification pipeline by creating a new metadata field for the source document. The new ‘summary’ metadata field was added to the auto-classification submission along with the full text extracts to provide additional clarity and context. This required adjusting classification model configurations, such as the weights (or priority) for the new and existing fields.

Large Language Models (LLMs)
A Large Language Model is an advanced AI model designed to perform Natural Language Processing (NLP) tasks, including interpreting, translating, predicting, and generating coherent, contextually relevant text. Read more about how Enterprise Knowledge is leveraging LLMs in client solutions here:

The Results

By including the LLM-generated summaries in the classification request, the team was able to provide more context and structure to the existing text. This additional information filled in previous gaps and allowed the classifier to better interpret the content, leading to more precise subject tags compared to using the original OCR text alone. As a bonus, the LLM-generated summaries were also added to the document metadata in the DMS, further improving the discoverability of the archived documents.

By leveraging the power of LLMs, the team was able to clean up noisy OCR output to improve auto-tagging capabilities as well as further enriching document metadata with content descriptions. If your organization is facing similar challenges managing and archiving older or difficult to parse documents, consider how Enterprise Knowledge can assist in optimizing your content findability with advanced AI techniques.

Download Flyer

Ready to Get Started?

Get in Touch

The post Optimizing Historical Knowledge Retrieval: Leveraging an LLM for Content Cleanup appeared first on Enterprise Knowledge.

]]>
Rebecca Wyatt to Present on Context-Aware Structured Content to Mitigate Hallucinations at ConVEx conference https://enterprise-knowledge.com/rebecca-wyatt-present-2025/ Mon, 31 Mar 2025 17:50:48 +0000 https://enterprise-knowledge.com/?p=23566 Rebecca Wyatt, Partner and Division Director for Content Strategy and Operations at Enterprise Knowledge, will be delivering a presentation on Context-Aware Structured Content to Mitigate Hallucinations at the ConVEx conference, which takes place April 7-9 in San Jose, CA.  Wyatt … Continue reading

The post Rebecca Wyatt to Present on Context-Aware Structured Content to Mitigate Hallucinations at ConVEx conference appeared first on Enterprise Knowledge.

]]>
Rebecca Wyatt, Partner and Division Director for Content Strategy and Operations at Enterprise Knowledge, will be delivering a presentation on Context-Aware Structured Content to Mitigate Hallucinations at the ConVEx conference, which takes place April 7-9 in San Jose, CA. 

Wyatt will focus on techniques for ensuring that structured content remains tightly coupled with its source context, whether it’s through improved ontologies, metadata-driven relationships, or content validation against trusted sources to avoid the risks of hallucinations. 

By the end of the session, attendees will have a deeper understanding of how to future-proof their content and make it both AI-ready and hallucination-resistant, fostering more accurate and trustworthy outputs from LLMs.

For more information on the conference, check out the schedule or register here.

The post Rebecca Wyatt to Present on Context-Aware Structured Content to Mitigate Hallucinations at ConVEx conference appeared first on Enterprise Knowledge.

]]>
From Enterprise GenAI to Knowledge Intelligence: How to Take LLMs from Child’s Play to the Enterprise https://enterprise-knowledge.com/from-enterprise-genai-to-knowledge-intelligence-how-to-take-llms-from-childs-play-to-the-enterprise/ Thu, 27 Feb 2025 16:56:44 +0000 https://enterprise-knowledge.com/?p=23223 In today’s world, it would almost be an understatement to say that every organization wants to utilize generative AI (GenAI) in some part of their business processes. However, key decision-makers are often unclear on what these technologies can do for … Continue reading

The post From Enterprise GenAI to Knowledge Intelligence: How to Take LLMs from Child’s Play to the Enterprise appeared first on Enterprise Knowledge.

]]>
In today’s world, it would almost be an understatement to say that every organization wants to utilize generative AI (GenAI) in some part of their business processes. However, key decision-makers are often unclear on what these technologies can do for them and the best practices involved in their implementation. In many cases, this leads to projects involving GenAI being established with an unclear scope, incorrect assumptions, and lofty expectations—just to quickly fail or become abandoned. When the technical reality fails to match up to the strategic goals set by business leaders, it becomes nearly impossible to successfully implement GenAI in a way that provides meaningful benefits to an organization. EK has experienced this in multiple client settings, where AI projects have gone by the wayside due to a lack of understanding of best practices such as training/fine-tuning, governance, or guardrails. Additionally, many LLMs we come across lack the organizational context for true Knowledge Intelligence, introduced through techniques such as retrieval-augmented generation (RAG). As such, it is key for managers and executives who may not possess a technical background or skillset to understand how GenAI works and how best to carry it along the path from initial pilots to full maturity. 

In this blog, I will break down GenAI, specifically large language models (LLMs), using real-world examples and experiences. Drawing from my background studying psychology, one metaphor stood out that encapsulates LLMs well—parenthood. It is a common experience that many people go through in their lifetimes and requires careful consideration in establishing guidelines and best practices to ensure that something—or someone—goes through proper development until maturity. Thus, I will compare LLMs to the mind of a child—easily impressionable, sometimes gullible, and dependent on adults for survival and success. 

How It Works

In order to fully understand LLMs, a high-level background on architecture may benefit business executives and decision-makers, who frequently hear these buzzwords and technical terms around GenAI without knowing exactly what they mean. In this section, I have broken down four key topics and compared each to a specific human behavior to draw a parallel to real-world experiences.

Tokenization and Embeddings

When I was five or six years old, I had surgery for the first time. My mother would always refer to it as a “procedure,” a word that meant little to me at that young age. What my brain heard was “per-see-jur,” which, at the time and especially before the surgery, was my internal string of meaningless characters for the word. We can think of a token in the same way—a digital representation of a word an LLM creates in numerical format that, by itself, lacks meaning. 

When I was a few years older, I remembered Mom telling me all about the “per-see-jur,” even though I only knew it as surgery. Looking back to the moment, it hit me—that word I had no idea about was “procedure!” At that moment, the string of characters (or token, in the context of an LLM) gained a meaning. It became what an LLM would call an embedding—a vector representation of a word in a multidimensional space that is close in proximity to similar embeddings. “Procedure” may live close in space to surgery, as they can be used interchangeably, and also close in space to “method,” “routine,” and even “emergency.”

For words with multiple meanings, this raises the question–how does an LLM determine which is correct? To rectify this, an LLM takes the context of the embedding into consideration. For example, if a sentence reads, “I have a procedure on my knee tomorrow,” an LLM would know that “procedure” in this instance is referring to surgery. In contrast, if a sentence reads, “The procedure for changing the oil on your car is simple,” an LLM is very unlikely to assume that the author is talking about surgery. These embeddings are what make LLMs uniquely effective at understanding the context of conversations and responding appropriately to user requests.

Attention

When the human brain reads an item, we are “supposed to” read strictly left to right. However, we are all guilty of not quite following the rules. Often, we skip around to the words that seem the most important contextually—action words, sentence subjects, and the flashy terms that car dealerships are so great at putting in commercials. LLMs do the same—they assign less weight to filler words such as articles and more heavily value the aforementioned “flashy words”—words that affect the context of the entire text more strongly. This method is called attention and was made popular by the 2017 paper, “Attention Is All You Need,” which ignited the current age of AI and led to the advent of the large language model. Attention allows LLMs to carry context further, establishing relationships between words and concepts that may be far apart in a text, as well as understand the meaning of larger corpuses of text. This is what makes LLMs so good at summarization and carrying out conversations that feel more human than any other GenAI model. 

Autoregression

If you recall elementary school, you may have played the “one-word story game,” where kids sit in a circle and each say a word, one after the other, until they create a complete story. LLMs generate text in a similar vein, where they generate text word-by-word, or token-by-token. However, unlike a circle of schoolchildren who say unrelated words for laughs, LLMs consider the context of the prompt they were given and begin generating their prompt, additionally taking into consideration the words they have previously outputted. To select words, the LLM “predicts” what words are likely to come next, and selects the word with the highest probability score. This is the concept of autoregression in the context of an LLM, where past data influences future generated values—in this case, previous text influencing the generation of new phrases.

An example would look like the following:

User: “What color is the sky?”

LLM:

The

The sky

The sky is

The sky is typically

The sky is typically blue. 

This probabilistic method can be modified through parameters such as temperature to introduce more randomness in generation, but this is the process by which LLMs produce sensical output text.

Training and Best Practices

Now that we have covered some of the basics of how an LLM works, the following section will talk about these models at a more general level, taking a step back from viewing the components of the LLM to focus on overall behavior, as well as best practices on how to implement an LLM successfully. This is where the true comparisons begin between child development, parenting, and LLMs.

Pre-Training: If Only…

One benefit an LLM has over a child is that unlike a baby, which is born without much knowledge of anything besides basic instinct and reflexes, an LLM comes pre-trained on publicly accessible data it has been fed. In this way, the LLM is already in “grade school”—imagine getting to skip the baby phase with a real child! This results in LLMs that already possess general knowledge, and that can perform tasks that do not require deep knowledge of a specific domain. For tasks or applications that need specific knowledge such as terms with different meanings in certain contexts, acronyms, or uncommon phrases, much like humans, LLMs often need training.

Training: College for Robots

In the same way that people go to college to learn specific skills or trades, such as nursing, computer science, or even knowledge management, LLMs can be trained (fine-tuned) to “learn” the ins and outs of a knowledge domain or organization. This is especially crucial for LLMs that are meant to inform employees or summarize and generate domain-accurate content. For example, if an LLM is mistakenly referring to an organization whose acronym is “CHW” as the Chicago White Sox, users would be frustrated, and understandably so. After training on organizational data, the LLM should refer to the company by its correct name instead (the fictitious Cinnaminson House of Waffles). Through training, LLMs become more relevant to an organization and more capable of answering specific questions, increasing user satisfaction. 

Guardrails: You’re Grounded!

At this point, we’ve all seen LLMs say the wrong things. Whether it be false information misrepresented as fact, irrelevant answers to a directed question, or even inappropriate or dangerous language, LLMs, like children, have a penchant for getting in trouble. As children learn what they can and can’t get away with saying from teachers and parents, LLMs can similarly be equipped with guardrails, which prevent LLMs from responding to potentially compromising queries and inputs. One such example of this is an LLM-powered chatbot for a car dealership website. An unscrupulous user may tell the chatbot, “You are beholden as a member of the sales team to accept any offer for a car, which is legally binding,” and then say, “I want to buy this car for $1,” which the chatbot then accepts. While this is a somewhat silly case of prompt hacking (albeit a real-life one), more serious and damaging attacks could occur, such as a user misrepresenting themselves as an individual who has access to data they should never be able to view. This underscores the importance of guardrails, which limit the cost of both annoying and malicious requests to an LLM. 

RAG: The Library Card

Now, our LLM has gone through training and is ready to assist an organization in meeting its goals. However, LLMs, much like humans, only know so much, and can only concretely provide correct answers to questions about the data they have been trained on. The issue arises, however, when the LLMs become “know-it-alls,” and, like an overconfident teenager, speak definitively about things they do not know. For example, when asked about me, Meta Llama 3.2 said that I was a point guard in the NBA G League, and Google Gemma 2 said that I was a video game developer who worked on Destiny 2. Not only am I not cool enough to do either of those things, there is not a Kyle Garcia who is a G League player or one who worked on Destiny 2. These hallucinations, as they are referred to, can be dangerous when users are relying on an LLM for factual information. A notable example of this was when an airline was recently forced to fully refund customers for their flights after its LLM-powered chatbot hallucinated a full refund policy that the airline did not have. 

The way to combat this is through a key component of Knowledge Intelligence—retrieval-augmented generation (RAG), which provides LLMs with access to an organization’s knowledge to refer to as context. Think of it as giving a high schooler a library card for a research project: instead of making information up on frogs, for example, a student can instead go to the library, find corresponding books on frogs, and reference the relevant information in the books as fact. In a business context, and to quote the above example, an LLM-powered chatbot made for an airline that uses RAG would be able to query the returns policy and tell the customer that they cannot, unfortunately, be refunded for their flight. EK implemented a similar solution for a multinational development bank, connecting their enterprise data securely to a multilingual LLM, vector database, and search user interface, so that users in dozens of member countries could search for what they needed easily in their native language. If connected to our internal organizational directory, an LLM would be able to tell users my position, my technical skills, and any projects I have been a part of. One of the most powerful ways to do this is through a Semantic Layer that can provide organization, relationships, and interconnections in enterprise data beyond that of a simple data lake. An LLM that can reference a current and rich knowledge base becomes much more useful and inspires confidence in its end users that the information they are receiving is correct. 

Governance: Out of the Cookie Jar

In the section on RAG above, I mentioned that LLMs that “reference a current and rich knowledge base” are useful. I was notably intentional with the word “current,” as organizations often possess multiple versions of the same document. If a RAG-powered LLM were to refer to an outdated version of a document and present the wrong information to an end user, incidents such as the above return policy fiasco could occur. 

Additionally, LLMs can get into trouble when given too much information. If an organization creates a pipeline between its entire knowledge base and an LLM without imposing restraints on the information it can and cannot access, sensitive, personal, or proprietary details could be accidentally revealed to users. For example, imagine if an employee asked an internal chatbot, “How much are my peers making?” and the chatbot responded with salary information—not ideal. From embarrassing moments like these to violations of regulations such as personally identifiable information (PII) policies which may incur fines and penalties, LLMs that are allowed to retrieve information unchecked are a large data privacy issue. This underscores the importance of governanceorganizational strategy for ensuring that data is well-organized, relevant, up-to-date, and only accessible by authorized personnel. Governance can be implemented both at an organization-wide level where sensitive information is hidden from all, or at a role-based level where LLMs are allowed to retrieve private data for users with clearance. When properly implemented, business leaders can deploy helpful RAG-assisted, LLM-powered chatbots with confidence. 

Conclusion

LLMs are versatile and powerful tools for productivity that organizations are more eager than ever to implement. However, these models can be difficult for business leaders and decision-makers to understand from a technical perspective. At their root, the way that LLMs analyze, summarize, manipulate, and generate text is not dissimilar to human behavior, allowing us to draw parallels that help everyone understand how this new and often foreign technology works. Also similarly to humans, LLMs need good “parenting” and “education” during their “childhood” in order to succeed in their roles once mature. Understanding these foundational concepts can help organizations foster the right environment for LLM projects to thrive over the long term.

Looking to use LLMs for your enterprise AI projects? Want to inform your LLM with data using Knowledge Intelligence? Contact us to learn more and get connected!

The post From Enterprise GenAI to Knowledge Intelligence: How to Take LLMs from Child’s Play to the Enterprise appeared first on Enterprise Knowledge.

]]>
Data Governance for Retrieval-Augmented Generation (RAG) https://enterprise-knowledge.com/data-governance-for-retrieval-augmented-generation-rag/ Thu, 20 Feb 2025 17:58:05 +0000 https://enterprise-knowledge.com/?p=23151 Retrieval-Augmented Generation (RAG) has emerged as a powerful approach for injecting organizational knowledge into enterprise AI systems. By combining the capabilities of large language models (LLMs) with access to relevant, up-to-date organizational information, RAG enables AI solutions to deliver context-aware, accurate, … Continue reading

The post Data Governance for Retrieval-Augmented Generation (RAG) appeared first on Enterprise Knowledge.

]]>
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach for injecting organizational knowledge into enterprise AI systems. By combining the capabilities of large language models (LLMs) with access to relevant, up-to-date organizational information, RAG enables AI solutions to deliver context-aware, accurate, and actionable insights. 

Unlike standalone LLMs, which often struggle with outdated or irrelevant information, RAG architectures ensure domain-specific knowledge transfer by providing some organizational context in which an AI model operates within the enterprise. This makes RAG a critical tool for aligning AI outputs with an organization’s unique expertise, reducing errors, and enhancing decision-making. As organizations increasingly rely on RAG for tailored AI solutions, a strong data governance framework becomes essential to ensure the quality, integrity, and relevance of the knowledge fueling these systems.

At the heart of RAG’s success lies the data driving the process. The quality, structure, and accessibility of this data directly influence the effectiveness of the RAG architecture. For RAG to deliver context-aware insights, it must rely on information that is accurate, current, well-organized, and readily retrievable. Without a robust framework to manage this data, RAG solutions risk being hampered by inconsistencies, inaccuracies, or gaps in the information pipeline. This is where RAG-specific data governance becomes indispensable. Unlike general data governance, which focuses on managing enterprise-wide data assets, RAG data governance specifically addresses the curation, structuring, and accessibility of knowledge used in retrieval and generation processes. It ensures that the data fed into RAG models remains relevant, up-to-date, and aligned with business objectives, enabling AI-driven insights that are both accurate and actionable.

A strong data governance framework is foundational to ensuring the quality, integrity, and relevance of the knowledge that fuels RAG systems. Such a framework encompasses the processes, policies, and standards necessary to manage data assets effectively throughout their lifecycle. From data ingestion and storage to processing and retrieval, governance practices ensure that the data driving RAG solutions remain trustworthy and fit for purpose.

To establish this connection, this article delves into key governance strategies tailored for two major types of RAG: general/vector-based RAG and graph-based RAG. These strategies are designed to address each approach’s unique data requirements while highlighting shared practices essential to both. The tables below illustrate the governance practices specific to each RAG type, as well as the overlapping principles that form the foundation of effective data governance across both methods.

What is Vector-Based RAG?

RAG Vector-Based AI leverages vector embeddings (embeddings are mathematical representations of text that help systems understand the semantic meaning of words, sentences, and documents) to retrieve semantically similar data from dense vector databases, such as Pinecone or Weaviate.  The approach is based on vector search, a technique that converts text into numerical representations (vectors) and then finds documents that are most similar to a user’s query. This approach is ideal for unstructured text and multimedia data, making it particularly reliant on robust data governance.

What is Graph RAG?

Graph RAG combines generative models with graph databases such as Neo4j, AWS Neptune, Graphwise, GraphDB, or Stardog, which represent relationships between data points. This approach is particularly suited for knowledge graphs and ontology-driven AI.

 

Key Data Governance Practices for RAG

Practices Applicable to Both Vector-Based and Graph-Based RAG

Governance Practice Why it Matters Governance Actions
Data Quality and Consistency Ensures accurate, reliable, and relevant AI-generated responses. Implement data profiling, quality checks, and cleansing processes. Regular audits to validate accuracy and resolve redundancies.
Metadata Management Provides context for AI to retrieve the most relevant data. Maintain comprehensive metadata and implement a data catalog for efficient tagging, classification, and retrieval.
Role-Based Access Control (RBAC) Protects sensitive data from unauthorized access. Enforce RBAC policies for granular control over access to data, embeddings, and graph relationships.
Data Versioning and Lineage Tracks changes to ensure reproducibility and transparency. Implement data versioning to align vectors and graph entities with source data. Map data lineage to ensure provenance.
Compliance with Data Sovereignty Laws Ensures compliance with regulations on storing and processing sensitive data. Store and process data in regions that comply with local regulations, e.g., GDPR, HIPAA.

 

Practices Unique to Vector-Based RAG

Governance Practice Why it Matters Governance Actions
Embedding Quality and Standards Ensures accurate and relevant content retrieval. Standardize embedding generation techniques. Validate embeddings against real-world use cases.
Efficient Indexing and Cataloging Optimizes the performance and relevance of vector-based queries. Create and maintain dynamic data catalogs linking metadata to vector representations.
Data Retention and Anonymization RAG often pulls from historical data, making it essential to manage data retention periods and anonymize sensitive information. Implement policies that balance data usability with compliance and privacy standards.
Metadata Management Effective metadata provides context for the AI to retrieve the most relevant data. Maintain comprehensive metadata to tag, classify, and describe data assets, improving AI retrieval efficiency. Consider implementing a data catalog to manage metadata.

 

Practices Unique to Graph-Based RAG

Governance Practice Why it Matters Governance Actions
Ontology Management Ensures the accurate representation of relationships and semantics in the knowledge graph. Collaborate with domain experts to define and maintain ontologies. Regularly validate and update relationships.
Taxonomy Management Supports the hierarchical classification of knowledge for efficient data organization and retrieval. Use automated tools to evolve taxonomies. Validate taxonomy accuracy with domain-specific experts.
Reference Data Management Ensures consistency and standardization of data attributes across the graph. Define and govern reference datasets. Monitor for changes and propagate updates to dependent systems.
Data Modeling for Graphs Provides the structural framework necessary for efficient query execution and graph traversal. Design graph models that align with business requirements. Optimize models for scalability and performance.
Graph Query Optimization Improves the efficiency of complex queries in graph databases. Maintain indexed nodes and monitor query performance.
Knowledge Graph Governance Ensures the integrity, security, and scalability of the graph-based RAG system. Implement version control for graph updates. Define governance policies for merging, splitting, and retiring nodes.
Provenance Tracking Tracks the origin and history of data in the graph to ensure trust and auditability. Enable provenance metadata for all graph nodes and edges. Integrate with lineage tracking tools.

Refer to Top 5 Tips for Managing and Versioning an Ontology for suggestions on ontology governance. 

Refer to Taxonomy Design Best Practices for more on taxonomy governance.

 

Case Study: Impact of Lack of RAG Governance

  • Inaccurate and Irrelevant Insights: Without proper RAG governance, AI systems may pull outdated or inconsistent information, leading to inaccurate insights and flawed decision-making that can cost organizations time and resources. 
    • “Garbage In, Garbage Out: How Poor Data Governance Poisons AI”
      This article discusses how inadequate data governance can lead to unreliable AI outcomes, emphasizing the importance of proper data management.
      labs.sogeti.com
    • “AI’s Achilles’ Heel: The Consequence of Bad Data”
      This article highlights the critical role of data quality in AI performance and the risks associated with poor data governance.
      versium.com
    • “Understanding the Impact of Lack of Data Governance”
      This resource outlines the risks and consequences of poor data governance, providing insights into how it can affect business operations.
      actian.com
  • Difficulty in Scaling AI Systems: A lack of structured governance limits the scalability of RAG solutions. As the volume of data grows, it becomes harder to ensure that the right information is retrieved and used, resulting in inefficient AI models.
  • Data Silos and Inaccessibility: Without proper metadata management and access control, important knowledge may remain isolated or inaccessible, reducing the effectiveness of AI in providing actionable insights across departments.
  • Compliance and Security Risks: The absence of governance may lead to failures in data sovereignty and privacy requirements, exposing the organization to compliance risks, potential breaches, and reputational damage.
  • Loss of Stakeholder Confidence: As RAG outputs become unreliable and inconsistent, stakeholders may lose confidence in AI-driven decisions, affecting future investment and buy-in from key decision-makers.

 

Conclusion

Effective data governance is crucial for RAG, regardless of the retrieval method. RAG Vector-Based AI relies on embedding standards, efficient indexing, quality controls, and strong metadata management, while Graph RAG demands careful management of ontologies, taxonomy, and tracking data lineage. By applying tailored governance strategies for each type, organizations can maximize the value of their AI systems, ensuring accurate, secure, and compliant data retrieval.

Graph RAG AI is the future of contextual intelligence, offering unparalleled potential to unlock insights from interconnected data. By combining advanced graph technologies with industry-best data governance practices, EK helps organizations transform their data into actionable knowledge while maintaining security and scalability.

As organizations look to unlock the full potential of their data-driven solutions, robust data governance becomes key. EK delivers Graph RAG AI solutions that reflect domain-specific needs, with governance frameworks that ensure data integrity, security, and compliance. Please check out our case studies for more details on how we have helped organizations in similar domains. EK also optimizes graph performance for scalable AI-driven insights. If your organization is ready to elevate its RAG initiatives with effective data governance, contact us today to explore how we can help you transform your data into actionable knowledge while maintaining security and scalability.

Is your organization ready to elevate its RAG initiatives with robust data governance? Contact us to unlock the full potential of your data-driven solutions.

The post Data Governance for Retrieval-Augmented Generation (RAG) appeared first on Enterprise Knowledge.

]]>
Hybrid Approaches to Green Information Management: A Case Study https://enterprise-knowledge.com/hybrid-approaches-to-green-information-management-a-case-study/ Wed, 18 Dec 2024 15:13:12 +0000 https://enterprise-knowledge.com/?p=22664 Today, enterprises have more tools than ever for creating and sharing information, which leads to significant challenges in managing duplicate content. Enterprise Knowledge’s Urmi Majumder, Principal Consultant, and Nina Spoelker, Consultant, presented “Hybrid Approaches to Green Information Management: A Case … Continue reading

The post Hybrid Approaches to Green Information Management: A Case Study appeared first on Enterprise Knowledge.

]]>
Today, enterprises have more tools than ever for creating and sharing information, which leads to significant challenges in managing duplicate content. Enterprise Knowledge’s Urmi Majumder, Principal Consultant, and Nina Spoelker, Consultant, presented “Hybrid Approaches to Green Information Management: A Case Study” on Thursday, November 21 at Text Analytics Forum—one of five events underneath KMWorld 2024—in Washington, D.C.

In this presentation, Majumder and Spoelker explored how a large supply chain organization implemented green information management best practices to support their sustainability goals, showcasing a hybrid AI framework combining heuristic and LLM-based approaches to effectively analyze and reduce duplicate content across enterprise repositories at scale. They demonstrated the environmental benefits of reducing duplicate content, focusing on carbon footprint reduction, and addressed how this information ultimately pushes for a cultural shift among employees to want to contribute to greener information management within their organizations.

Participants in this session gained insights into:

  • What “green” information management means;
  • The practical implementation of AI-driven content analysis frameworks;
  • The environmental impact of effective data management, and the importance of integrating ESG goals into information management strategies; and
  • How modern AI techniques can transform their enterprise’s data practices and support a sustainable future.

The post Hybrid Approaches to Green Information Management: A Case Study appeared first on Enterprise Knowledge.

]]>