semantic rag Articles - Enterprise Knowledge http://enterprise-knowledge.com/tag/semantic-rag/ Mon, 17 Nov 2025 22:16:53 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.2 https://enterprise-knowledge.com/wp-content/uploads/2022/04/EK_Icon_512x512.svg semantic rag Articles - Enterprise Knowledge http://enterprise-knowledge.com/tag/semantic-rag/ 32 32 Women’s Health Foundation – Semantic Classification POC https://enterprise-knowledge.com/womens-health-foundation-semantic-classification-poc/ Thu, 10 Apr 2025 19:20:31 +0000 https://enterprise-knowledge.com/?p=23789 A humanitarian foundation focusing on women’s health faced a complex problem: determining the highest impact decision points in contraception adoption for specific markets and demographics. Two strategic objectives drove the initiative—first, understanding the multifaceted factors (from product attributes to social influences) that guide women’s contraceptive choices, and second, identifying actionable insights from disparate data sources. The key challenge was integrating internal survey response data with internal investment documents to answer nuanced competency questions such as, “What are the most frequently cited factors when considering a contraceptive method?” and “Which factors most strongly influence adoption or rejection?” This required a system that could not only ingest and organize heterogeneous data but also enable executives to visualize and act upon insights derived from complex cross-document analyses. Continue reading

The post Women’s Health Foundation – Semantic Classification POC appeared first on Enterprise Knowledge.

]]>

The Challenge

A humanitarian foundation focusing on women’s health faced a complex problem: determining the highest impact decision points in contraception adoption for specific markets and demographics. Two strategic objectives drove the initiative—first, understanding the multifaceted factors (from product attributes to social influences) that guide women’s contraceptive choices, and second, identifying actionable insights from disparate data sources. The key challenge was integrating internal survey response data with internal investment documents to answer nuanced competency questions such as, “What are the most frequently cited factors when considering a contraceptive method?” and “Which factors most strongly influence adoption or rejection?” This required a system that could not only ingest and organize heterogeneous data but also enable executives to visualize and act upon insights derived from complex cross-document analyses.

 

The Solution

To address these challenges, the project team developed a proof-of-concept (POC) that leveraged advanced graph technology combined with AI-augmented classification techniques. 

The solution was implemented across several workstreams:

Defining System Functionality
The initial phase involved clearly articulating the use case. By mapping out the decision landscape—from strategic objectives (improving modern contraceptive prevalence rates) to granular insights from user research—the team designed a tailored taxonomy and ontology for the women’s health domain. This semantic framework was engineered to capture cultural nuances, local linguistic variations, and the diverse attributes influencing contraceptive choices.

Processing Existing Data
With the functionality defined, the next phase involved transforming internal survey responses and investment documents into a unified, structured format. An AI-augmented classification workflow was deployed to extract tacit knowledge from survey responses. This process was supported by a stakeholder-validated taxonomy and ontology, allowing raw responses to be mapped into clearly defined data classes. This robust data processing pipeline ensured that quantitative measures (like frequency of citation) and qualitative insights were captured in a cohesive base graph.

Building the Analysis Model
The core of the solution was the creation of a Product Adoption Survey Base Graph. Processed data was converted into RDF triples using a rigorous ontology model, forming the base graph designed to answer competency questions via SPARQL queries. While this model laid the foundation for revealing correlations and decision factors, the full production of the advanced analysis graph—designed to incorporate deeper inference and reasoning—remained as a future enhancement.

Handoff of Analysis Graph Production and Frontend Implementation
Due to time constraints, the production of the comprehensive analysis graph and the implementation of the interactive front end were transitioned to the client. Our team delivered the base graph and all necessary supporting documentation, providing the client with a solid foundation and a detailed roadmap for further development. This handoff ensures that the client’s in-house teams can continue productionalizing the analysis graph and integrate it with their BI dashboard for end-user access.

Provide a Roadmap for Further Development
Beyond the initial POC, a clear roadmap was established. The next steps include refining the AI classification workflow, fully instantiating the analysis graph with enhanced reasoning capabilities, and developing the front end to expose these insights via a business intelligence (BI) dashboard. These tasks have been handed off to the client, along with guidance on leveraging enterprise graph database licenses and integrating the solution within existing knowledge management frameworks.

 

The EK Difference

A standout feature of this project is its novel, generalizable technical architecture:

Ontology and Taxonomy Design
A custom ontology was developed to model the women’s health domain—incorporating key decision factors, cultural influences, and local linguistic variations. This semantic backbone ensures that structured investment data and unstructured survey responses are harmonized under a common framework.

AI-Augmented Classification Pipeline:
The solution leverages state-of-the-art language models to perform the initial classification of survey responses. Supported by a validated taxonomy, this pipeline automatically extracts and tags critical data points from large volumes of survey content, laying the groundwork for subsequent graph instantiation, inference, and analysis.

Graph Instantiation and Querying:
Processed data is transformed into RDF triples and instantiated within a dedicated Product Adoption Survey Base Graph. This graph, queried via SPARQL through a GraphDB workbench, offers a robust mechanism for cross-document analysis. Although the full analysis graph is pending, the base graph effectively supports the core competency questions.


Guidance for BI Integration:
The architecture includes a flexible API layer and clear documentation that maps graph data into SQL tables. This design is intended to support future integration with BI platforms, enabling real-time visualization and executive-level decision-making.

 

The Results

The POC delivered compelling outcomes despite time constraints:

  • Actionable Insights:
    The system generated new insights by identifying frequently cited and impactful decision factors for contraceptive adoption, directly addressing the competency questions set by the Women’s Health teams.
  • Improved Data Transparency:
    By structuring tribal knowledge and unstructured survey data into a unified graph, the solution provided an explainable view of the decision landscape. Stakeholders gained visibility into how each insight was derived, enhancing trust in the system’s outputs.
  • Scalability and Generalizability:
    The technical architecture is robust and adaptable, offering a scalable model for analyzing similar survey data across other health domains. This approach demonstrates how enterprise knowledge graphs can drive down the total cost of ownership while enhancing integration within existing data management frameworks.
  • Strategic Handoff:
    Recognizing time constraints, our team successfully handed off the production of the comprehensive analysis graph and the implementation of the front end to the client. This strategic decision ensured continuity and allowed the client to tailor further development to their unique operational needs.
Download Flyer

Ready to Get Started?

Get in Touch

The post Women’s Health Foundation – Semantic Classification POC appeared first on Enterprise Knowledge.

]]>
Humanitarian Foundation – SemanticRAG POC https://enterprise-knowledge.com/humanitarian-foundation-semanticrag-poc/ Wed, 02 Apr 2025 18:03:04 +0000 https://enterprise-knowledge.com/?p=23603 A humanitarian foundation needed to demonstrate the ability of its Graph Retrieval Augmented Generation (GRAG) system to answer complex, cross-source questions. In particular, the task was to evaluate the impact of foundation investments on strategic goals by synthesizing information from publicly available domain data, internal investment documents, and internal investment data. The challenge laid in .... Continue reading

The post Humanitarian Foundation – SemanticRAG POC appeared first on Enterprise Knowledge.

]]>

The Challenge

A humanitarian foundation needed to demonstrate the ability of its Graph Retrieval Augmented Generation (GRAG) system to answer complex, cross-source questions. In particular, the task was to evaluate the impact of foundation investments on strategic goals by synthesizing information from publicly available domain data, internal investment documents, and internal investment data. The challenge laid in connecting diverse and unstructured information and also ensuring that the insights generated were precise, explainable, and actionable for executive stakeholders.

 

The Solution

To address these challenges, the project team developed a proof-of-concept (POC) that leveraged advanced graph technology and a semantic RAG (Retrieval Augmented Generation) agentic workflow. 

The solution was built around several core workstreams:

Defining System Functionality

The initial phase focused on establishing a clear use case: enabling the foundation to query its data ecosystem with natural language questions and receive accurate, explainable answers. This involved mapping out a comprehensive taxonomy and ontology that could encapsulate the knowledge domain of investments, thereby standardizing how investment documents and data were interpreted and interrelated.

Processing Existing Data

With functionality defined, the next step was to ingest and transform various data types. Structured data from internal systems and unstructured investment documents were processed and aligned with the newly defined ontology. Advanced techniques, including semantic extraction and graph mapping, were employed to ensure that all data—regardless of source—was accessible within a unified graph database.

Building the Chatbot Model

Central to the solution was the development of an investment chatbot that could leverage the graph’s interconnected data. This was approached as a cross-document question-answering challenge. The model was designed to predict answers by linking query nodes with relevant data nodes across the graph, thereby addressing competency questions that a naive retrieval model would miss. An explainable AI component was integrated to transparently show which data points drove each answer, instilling confidence in the results.

Deploying the Whole System in a Containerized Web Application Stack

To ensure immediate usability, the POC was deployed, along with all of its dependencies, in a user-friendly, portable web application stack. This involved creating a dedicated API layer to interface between the chatbot and the graph database containers, alongside a custom front end that allowed executive users to interact with the system and view detailed explanations of the generated answers and the source documents upon which they were based. Early feedback highlighted the system’s ability to connect structured and unstructured content seamlessly, paving the way for broader adoption.

Providing a Roadmap for Further Development

Beyond the initial POC, the project laid out clear next steps. Recommendations included refining the chatbot’s response logic, optimizing performance (notably in embedding and document chunking), and enhancing user experience through additional ontology-driven query refinements. These steps are critical for evolving the system from a demonstrative tool to a fully integrated component of the foundation’s data management and access stack.

 

 

The EK Difference

A key differentiator of this project was its adoption of standards-based semantic graph technology and its highly generalizable technical architecture. 

The architecture comprises:

Investment Ontology and Data Mapping:

A rigorously defined ontology underpins the entire system, ensuring that all investment-related data—from structured datasets to narrative reports—is harmonized under a common language. This semantic backbone supports both precise data integration and flexible query interpretation.

Graph Instantiation Pipeline:

Investment data is transformed into RDF triples and instantiated within a robust graph database. This pipeline supports current data volumes and is scalable for future expansion. It includes custom tools to convert CSV files and other structured datasets into RDF and mechanisms to continually map new data into the graph.

Semantic RAG Agentic Workflow and API:

The solution utilizes a semantic RAG approach to navigate the complexities of cross-document query answering. This agentic workflow is designed to minimize unhelpful hallucinations, ensuring that each answer is traceable back to the underlying data. The integrated API provides a seamless bridge between the front-end chatbot and the back-end graph, enabling real-time, explainable responses.

Investment Chatbot Deployment:

Built as a central interface, the chatbot exemplifies how graph technology can be operationalized to address executive-level investment queries. It is fine-tuned to reflect the foundation’s language and domain knowledge, ensuring that every answer is accurate and contextually relevant.

 

The Results

The POC successfully demonstrated that GRAG could answer complex questions by:

  • Delivering coherent and explainable recommendations that bridged structured and unstructured investment data.
  • Significantly reducing query response time through a tightly integrated semantic RAG workflow.
  • Providing a transparent AI mapping that allowed stakeholders to see exactly how each answer was derived.
  • Establishing a scalable architecture that can be extended to support a broader range of use cases across the foundation’s data ecosystem.

This project underscores the transformative potential of graph technology in revolutionizing how investment health is assessed and how strategic decisions are informed. With a clear roadmap for future enhancements, the foundation now has a powerful, next-generation tool for deep, context-driven analysis of its investments.

Download Flyer

Ready to Get Started?

Get in Touch

The post Humanitarian Foundation – SemanticRAG POC appeared first on Enterprise Knowledge.

]]>